
N94-11436

MYTHS AND REALITIES:

Defining Re-engineering for a Large
Organization

By Sandra Yin and Julia McCreary
Internal Revenue Service

8405 ColesviUe Rd., Suite 300

Silver Spring, MD 20910-3312

SEL-92-004 page 326

Io

A.

B.

H.
A.

B.

C

D.
E.

F.

G.

m.
A.

B.

C
D.

IV.

A.

B.
C.

D.

F_
F.

G.

V.

A.

B.
C

VI.

A.

B.

C
D°

F_

Fo

G.

H.

I.

VII.

VIII.

IX.

MYTHS AND REALITIES:

Defining Re-engineering for a Large Organization

Abstract

Introduction

Internal Revenue Service Tax Systems Modernization

Myths and Realities
Concepts, Content and Context: IRS Assessment and RS Methods

Objectives
Software Re-engineering Taxonomy

A Framework for Redevelopment

Portfolio Analysis

Up, Over, and Down: Applied Use of Methods
Technical Opportunities

Project Plans for Four Executive-Selected IRS Systems

Tips, Tricks & Traps: The Rs Prototype

Objectives

Findings
Technical Approach for Data

Technical Approach for Process
Features and Futures: Automated Tool Market Survey

Objectives
Interview Results: IRS RS Objectives

Tool Integration
Multi-Vendor RS Tool Set Examples

Commercially Available Integration Environments

Transition Challenge: Managing Multiple Tools

Roll Up Your Shirt Sleeves: Rs

Business Re-engineering
How does Technology Support Business Needs?
How does Software Re-engineering Support Business Re-engineering?

Risk Management
Recommendations for the Organization

Define and Implement an Infrastructure

Prepare an Inventory of Current Systems
Conduct a Business Needs Assessment/Measurement Phase

Develop Criteria to Select RS Candidates

Write a Transition Strategy
1. Two sets of transition strategies

2. Prioritize RS objectives for the entire enterprise

3. Use RS opportunities to support organizational readiness

Choose a Candidate Project(s) Targeting Implementation
Establish an R3 Team

Procure Tools which meet the Business Needs, Objectives and Timeframes

Rationalize Enterprise-wide Data and Standardize Data Names

Technology Transition

Marketing R3 Internally
Realities of RS

SEL-92-004 page327

This paper describesthe background and resultsof three studiesconcerning software

reverse engineering, re-engineering and reuse (R3) hosted by the Internal Revenue
Servicel in 1991 and 1992. The situationat the InternalRevenue -aging, piecemeal

computer systems and outdated technology maintained by a large staff-isfamiliarto

many institutions,especiallyamong management information systems. IRS is

distinctivefor the sheer magnitude and diversityof itsproblems: the country'stax

records are processed using assembly language and COBOL, spread acrosstape and

network DBMS files,allcryingout for a betterway of doing business! How do we

proceed with replacing legacy systems? The three software re-engineering studies
looked at methods, CASE tool support, and performed a prototype project using

re-engineering methods and tools. During the course of these projects, we discovered
critical issues broader than the mechanical definitions of methods and tool technology.

If we could all just develop new software from scratch, life would be so simple.
Therein lies the thorn for most large scale "new" development:, planning an orderly

transition,organizationalreadiness and business re-engineering.

Tax Systems Modernization
The IRS is in the process of modernizing all of its tax processing systems. Tax Systems

Modernization (TSM) is a long-term effort to move from stand-alone legacy business

systems built on old technology to integrated systems based on enterprise-wide

planning and management. Lines of code for IRS existing systems has been quoted to
number 16 million - 8M Unisys COBOL and 8M IBM assembler. Though often cited,

the statistic is not revealing without further classifications and other measurements or

breakdowns. These programs are used for mainframe processing of taxpayer accounts

and tax returns in regional IRS centers. IRS also has other systems written in IBM
COBOL, C, and 4GL. All parties agree - manually maintaining these systems with

often overlapping functionality comes at great cost. The planned modernization effort
will take the better part of the decade and, since 1989, has been primarily approached by

the Service as a new, top-down development effort using information engineering.

In 1991 and 1992, the IRS undertook three projectsto answer the questions: "Is

re-engineering a technology which could assistthe]RS in itsmodernization effort?"

and, ifso, "How should we proceed?". The scope of allthree projectswas software

reverse engineering,re-engineering and reuse,which we referto as R3 internallyat

IRS and within thispaper. The projectswere initiatedby the IntegrationDivision of

Information Systems Development of the IRS National Office. Partners included the

Transition Management Office,which ispresently defining the Software Development
Environment (SDE) for the modernization, and the Compliance Division,which

maintains systems controllingtax law compliance cases,both within Information

Systems Management. The projectswere contracted out to three private companies.

Within IRS, these projectswere defined and managed by a small group of people who

were activein the work and R3 questions as posed to the vendors.

I The InternalRevenueService(IF,S)isa federalagencybelongingtotheUnitedStates

DepartmentofTreasury.Itsmissionistoadministerand enforcethefederaltaxlaw forThe United
States of America.

SEL-92-004 page 328

Myths and Realities
With the experience of the methods, tools and prototype projects behind us, combined
with lessons learned in information engineering and watching CASE technology

improve over three years, we can see that some of the initial questions and
expectations for R3 reflected a naivete about what CASE can do to support software

engineering. We shall describe some "myths and realities" we discovered in the
context of related subjects. Here are some mythical, yet widely-held, organizational

assumptions surrounding the R3 projects at the onset.2

• Reverse engineering and re-engineering are synonymous.
• Re-engineering soils the pure top-down engineering effort.

• The old programs are so encrusted with history there is nothing to salvage.

• Re-engineering is fully automated.

• A single CASE tool is the solution for new development.

• Buy a CASE tool; and don't bother with infrastructure, work process,

organizational readiness and process improvement needs.
• Wishful thinking makes it so.

Concepts. Content and Context:.
IRS Assessment and P_ Methods

Objectives
The first project undertaken, contracted to Price Waterhouse from the Fall of 1991

through mid-1992, was intended as a means of assessing IRS re-engineering

opportunities and setting clear ob'_dves for implementation. Re-engineering terms
were defined in a taxonomy and a methodology for implementation was proposed
based on IRS needs. The initial objectives were as follows:

• Produce a taxonomy of industry-standard R3 terms and definitions.

• Develop and publish taxonomy-supported reverse engineering and

re-engineering methods which map to n_ standard methodologies: the existing
Software Development Life Cycle (circa '82 Yourdon) IRS standards; and the then-draft

Information Engineering Life Cycle (IELC, James Martin's IE Methodology), the IRS

standard for modernization development.
• Review IRS documents stating modernization goals, standards, etc. Perform

corporate assessment on broad needs and areas of opportunity.
• Connect user-stated needs and objectives with planned processes and tools.

• Further assess and produce sample plans for four executive-selected, IRS systems

which represent a wide spectrum of R3 needs and potential.

Software Re-engineering Taxonomy (Standard Definitions)

It is very important that every organization establish its standard definitions.
Standard terms and definitions serve to articulate objectives and tasks, and remove

ambiguity from legal documents such as contract specifications. We recommend

reusing meanings known industry-wide for a given word, and refrain from creating a

specialized definition for your company.

2 The authors do not believe the any of the myths listed in the paper. We use "mythical" here

to mean: without foundation in fact; imaginary; fictitious. Early on during our projects defining re-
engineering, simple closer inspection and experience dispelled most myths.

SEL-92-004 page 329

3

One of the stumbling blocks we encountered from the beginning was the proliferation
of "RE-" words, causing confusion rather than providing a basis for clear

communication.3 The IRS documented multiple sources of definitions for a volume

of eighty-four terms, and standardized on a single, preferred meaning for each term.

_S generally uses the IEEE definitions, which are often equivalent to industry
standards. Here are some examples of definitions for R3.

Reverse engineering:

The process of deriving a conceptual description of a system's components from its

physical-level description, with the aid of automated tools (McClure).
Re-Engineering:

1. A combination of tools and techniques that facilitate the analysis,

improvement, redesign and reuse of existing software systems to support changing

information requirements (Ulrich).
2. Combined processes encompassing reverse and forward engineering, resulting

in a "new" system (IEEE).
3. Improving current systems without impacting current functions, technical

platforms or archictectures (Guide).
Reuse:.

1. Applying knowledge about one system to another system.
2. Sharing software components, requirements, and effort of maintenance.

While IRS began by endorsing the IEEE definition of re-engineering, we have moved
toward a definition to include: using tools to make analyses and discoveries about an

existing system and using the tools to create an improved system. The reason is that

re-engineering entails so much more than reverse plus forward engineering. Much of

the benefit of re-engineering is derived from the assessment, conditioning and

positioning activities, discussed in the framework below. We have spent a lot of time

and effort in damage control just explaining the definition of re-engineering, trying to

move beyond the myths. Meanwhile, today we find across the industry the term
redevelopment has emerged as a recent de facto standard term describing what IRS

cans re-engineering.

A Framework for Redevelopment (Methodology)

The taxonomy was applied to a structure of categories or sequences, to guide work

processes or methods. There are numerous frameworks we have seen which provide
umbrellas over the taxonomy, all the "re-" words and more. Trade magazines and

conferences can provide much information for comparison about what techniques are

available, but full-blown details of methods are often proprietary and only available as

services rendered during the course of a contracted redevelopment project. Some
vendors offer redevelopment services bundled with their proprietary tool.

3 There exists a plethora of "re-" words and terms: restTucturing, redesign, resystemization,

re-architecting, re-documentation, redevelopment, re-engineering, reinventing-tbe-wheel. It is
personally frustrating to find every common technical term rediscovered and prefixed with "re-". For
several of the "re-" words, we venture the epistemology comes from those with a top-down view of

software engineering. Those who think software engineering is evolutionary might think change or
improvement is expected, and not require prefixes to describe necessarily iterative tasks. Get beyond
"re-" words by using descriptive phases to state objectives, i.e. DBMS migration from IDMS to DB2 vs.
re-architecting.

8EL-92-004page330

4

One example of applied methods is the Framework for Redevelopment (Ulrich),
reference Slide 9. This framework is the basis for a commercially-available off-the-

shelf encyclopedia of objective-driven and "scenario-based" methods, approaches and

procedures. It uses Zachman's Information Systems Architecture Frameworlc enables
decision making during Inventory/Analysis; reconciles top-down planning with

bottom-up mapping during Functional Assessment; makes source level

improvements during Positioning; targets existing maintenance environment or
Transformation. The Transformation methods are determined by the

implementation scenarios. Transformation options include targeting the Information

Engineering's Design and Construction phases in an I-CASE environment. This
framework example is noteworthy. It is a new COTS product since Summer, 1992. Its

timing indicates the market is demanding scenario-based options to development, and

in particular, it offers several missing pieces from top-down information engineering

concerning the role of legacy systems in new development and the transition from

legacy systems to the new target.4

Terminology will vary among methodologies. The methods need to be supported by
automated tools; and the terminology and framework - along your organization's

objective-driven, scenario-based path - describe the functionality of those tools. A

general awareness of the tools on the market needs to be taken into consideration
before deciding your objectives. Obviously, there is a trade-off to keep in mind so that

you select objectives which may be supported using CASE and which are implemented

within time and budget.

Some aspects of the life cycle are only feasible with tool support. Today, methods
which work at the source or design level are feasible using tools (e.g. tool-supported

measurements or improvements may be made to existing systems which target
maintenance). However, we are continually challenged with the question, "What
about business functions?" After all, what is the objective in an archaelogical dig into

legacy systems if one can not extract the business function? Presently, the tools on the
market which work with process logic do not "extract" essential business rules to the

analysis level; the analyst works interactively at the design level. Business functions

represent requirements. If one has traceability to requirements for an existing system,

the redevelopment and transition to a new target would be more straight forward.

Necessity is the Mother of Invention. To the vendor community: we need
redevelopment support at the analysis level; i.e. ability to extract functional flow
(Phemister) and business rules (Gane), and better data/process/object rationalization

and management support.

Presently, redevelopment methods and tools are evolving rapidly. Generational
advances in hardware architectures and software engineering are also affecfi'ng

redevelopment methods. We expect near-term evolution of CASE to include: state
transition, extensions to entity-relationship modeling, object-oriented methods and

4 Objective-driven and scenario-based simply refer to letting the parameters of your specific,
current environment along with custom needs and goals dictate the solution. This sounds obvious, like
cormnon sense. However, some organizations in an early stage of adopting new technology might
attempt purist approaches. Originally at IRS, re-engineering was heresy against information
engineering methodology, while recently people are more open to possibilities of a symbiotic
relationship.

SEL-92-004 page 331

targets, links to client-server tools, etc. Redevelopment tools will need to incorporate

these new CASE targets.

Redevelopment work is a team effort, sometimes compared to an archaelogical dig.

The technology itself is no "silver bullet". Regardless of how you acquire the

methodology suitable for your organization, create teams which include people with

prior experience in your redevelopment scenario and in the application domain.

Portfolio Analysis
Common to every framework is a strong, up-front emphasis on "portfolio analysis",

assessments to guide decisions about project objectives and strategies. Decisions

regarding the benefit of re-engineering any system must always be made in relation to
organizational goals and objectives. Portfolio analysis assesses the condition of an

existing system or systems, in order to strategically select re-engineering options which
are both technically feasible and advantageous from a business perspective, reference
Slide 10.

This is management by triage. At an enterprise level, each program maps to the

portfolio analysis quadrants, offering a snapshot of the state the enterprise. The
enterprise is then grouped into categories of programs with like characteristics, e.g.

mission-critical, multiple applications with common functions, hardware platforms.

For example, portfolio analysis measures the level of effort to move systems en masse,
from mainframe Unisys batch/fiat file COBOL to CASE/client- server target, while

pointing out those programs which are not worth the effort.

At a program level, the data structures and processes need to be assessed regarding
how well they support business functions and the degree of platform independence.

Their quality depends upon how stable or reusable the software components are and

whether they represent requirements for the replacement system. Depending upon
the combinations of low/high technical value and low/high functional value: retire

or rewrite some systems; migrate some intact functionally to new architectures; repair

others to last until replacement; and reuse as basis for new development or use as

mapping for Current Systems Analysis.

During the IRS project, the corporate assessment was performed "manually", by
interviewing people in information systems maintenance and new development, and

by reviewing various documents. As a manual effort, the portfolio analysis needs to
be "maintained" and become more comprehensive in the future. If an organization

performs this current systems assessment with the aid of tools, there is the added

benefit of having an authoritative source and integrated inventory (a repository of

current operations, systems, platforms, locations, versions, languages, DBMSs,

teleprocessing, methods, metrics, measurements, etc.) which could be put to other
uses.

Myth: "Metrics and measurements are just unnecessary overhead."

Reality: One can not begin to understand the scope of a problem unless it is measured.

Fixes based on anything less is like practicing folk medicine. Show potential
customers the use and benefits of each measurement.

SEL-92-004 page 332

6

Again and again,we cannot stressenough: make informed decisionsregarding

business objectivesbefore jumping in headfirst. Assessment based on organizational

goals determines your selection of projects; project objectives and scenarios determine
your methods; and methods determine the appropriate technology you need to get the

job done.

Up, Over, and Down: Applied Use of Methods
It is a great temptation to use methods to defend the use of a favorite tool or

technology. We experienced a mid-life-cycle crisis in the prototype project when we
discovered that the goal of taking the old code into a CASE tool and moving forward

was inappropriate for the candidate we had chosen. This is not to say that applying
these methods to a project cannot be a good one. Rather, the portfolio analysis,

categorizing the system and establishing project goals, was not fully performed.

Be sure to use methods sensibly: still working within a framework and having

selected the objectives, the software process and methods should be repeatable for a

given scenario-type. The scenario example described above, populating an I-CASE
tool with existing system components and using the I-CASE tool to forward engineer

to the target environment, can be very beneficial when applied to an appropriate

candidate, reference Slide 11.

Note, in the slide,the black arrows between constructionand design phases, grey

arrows between design and analysis,and white between planning and analysison the

forward engineering side only. This means several things. First, lack of tool support
on the process side only makes reverse engineering feasible for creating design-level
abstractions from source code. Second, better tool support for the data side allows the

possibility to extract analysis phase constructs, through a multi-step process, from the
source data structures and data definition language. Third, integration between

planning and analysis is manual, top-down only. One's choice of methods, and how
"high" up the I-CASE tool to target for reverse engineering, must be dependent on the

availability of tool support, the risk taken by that approach, and the level of effort, time
and cost. Consider as part of the cost, not only the price of the CASE tools, but the

likelihood of needing help from experienced consultants.

Myth: "Reverse engineering means using an automated tool which does everything
unassisted upon pressing a button," or, the opposite, 'q'here is no such thing as

reverse engineering".
Reality: Let the buyer beware of smoke and mirrors. There are good tools in most all

classificationsS; however, code reverse engineering to an analysis level is not

here today. Reverse engineering and re-engineering is hard work, where the

analyst is usually assisted in decision-making with interactive tools. Tools in
the hands of an inexperienced or undisciplined user can potentially cause

damage faster than that user could with bare hands. Make plans, and
understand the methods. "Just-in-time training" and mixed teams of specialists

and learners can ease technology transfer in the organization.

5 Tool classes parallel the methods. The following tool classes were created during the Market
Survey project and are: existing systems (enhancement, assessment and conditioning); repository
load/enhancement; new/replacement systems; repositories; integrated tool set environments;

testing/validation; software/project management.

SEL-92-004 page 333

7

Another methodology provided by Price Waterhouse, reference Slide 12.A,
demonstrates re-engineering phases within a life cycle. Here re-engineering tasks can
be related to the familiar forward engineering life cycle phases of analysis, design and

construction. Examples of applying re-engineering solutions to business problems,
reference Slides 12.B-D, are technical redesign, functional enhancement, system

rationalization, hardware platform conversion, and CASE migration.

Technical Opportunities
Reuse provides the greatest potential benefits from reverse and re-engineering.
Whether in the context of recycling old system components for one-time use by new

development, sharing software components between both existing and new systems,
or consolidating redundant software components (requirements, data, its behavior and

testing, etc.) into a shared resource, reuse has demonstrated benefits. The IRS
Assessment and R3 Methods study included private industry case studies where reuse

was universally stated by companies as a prindple benefit. During the IRS assessment

of re-engineering objectives and targets, the consensus of many interviewees was

reuse provided the incentive for re-engineering. The IRS has identified certain
functions which could benefit from sharing software components, as opposed to the

present way of independently programming and testing some redundant

requirements and functions.

Myth: "Reuse is a matter of organizing a reuse library..."
Reality: Reuse is much more than the catalog of reusable components. Reusable

components need to be both used and maintained. Give clear thought to the

objectives and strategy for reuse. At the highest (software life cycle) level

possible, try to put boundaries around the generalized domain in question, and
re-engineer or forward engineer from there. Reusable requirements are perhaps

the highest objective. Multiple users of a shared software component might add
their extensions. Determine procedures for reuse management. Who owns,

uses and maintains software components? How to make reusable objects

'living and accessible" (are they being used)? Know a given reusable object's
'_andwidth" of reusability through a life cycle. What is the reuse repository or
SDE framework service information model; etc? Reuse is a program requiring

support and incentives throughout the culture of the organization, from

managers to the users of reuse. Reuse the lessons of case studies rather than

reinventing the wheel.

Myth: "I am not going to re-engineer, I am using I-CASE [new, top-down

development]."
Reality: Re-engineering is not an alternative to I-CASE, competing for devlopment

attention. Rather, it supports top-down development at several strategic points,
to include verification & validation, current systems assessment and transition

issues. An organization with business or management information includes

data among its most valuable assets. Any replacement system for MIS must
consider the transition and continuity of the data. At a minimum, the

developer must include data re-engineering in any development, and better to

do so with foresight and a methodology than when it comes time for nu'grating

production data. The developer must examine a system's external data

SEL-92-004 page 334

8

interfaces.6 Regardless of how archaic the legacy system may be, the developer

of the replacement system needs to know the mapping from old files to new,
while the implied data model may be used as a skeletal starting point for new

redesign and development. There are tools which make improvements to

software components, though often the traceability history between old and new
is lost or kept manually. The reality is with or without tool support, the

developer must manage the transition.

Project Plans for Four Executive-Selected IRS Systems"
Plans were drawn up for re-engineering four systems which were selected because they

represented typical and significant software and/or business problems at IRS. Their

approaches were seen as repeatable for other similar projects. The four projects were:
1. Share software components - reuse penalty and interest calculations.

2. Convert from Unisys network DBMS to IBM Relational DBMS.

3. Migrate a recently-developed system (electronic returns filing), with a long
expected life, to an I-CASE tool; and maintain from the design level of the tool. Reuse
some tax form field validation routines between electronic filing and paper returns

processing systems.
4. Use tools to work with IBM assembly code fiRS Master File). Options include

improving the assembly language code, establishing reusable modules (D-Sects),

modeling the Master File data structures, testing conversion to COBOL or I-CASE.

Tips,Tricks & Traps:
Prototyp_ e

Objectives
At the same time the Assessment and Methods project was going on, a prototype was

developed by Integrated Microcomputer Services, Inc. (Ilk/IS) in RockviUe, Maryland.

The system was fairly representative of IRS code. It produces letters and

correspondences mailed to taxpayers. It had 70,000 lines of COBOL code; 37 batch and

online transaction programs; fiat files and DMS-1100 network DBMS; Unisys 1100

platform. A contractor lead a mixed team of consultants and IRS staff. The IRS staff
had no prior experience with CASE tools, but were knowledgeable as maintenance

programmers of that application system. The objectives of the prototype were as
follows:

• Reverse engineer existing system into a CASE tool
Condition code to be acceptable to CASE tool

Decouple data from logic
Create design structures from code

Create design structures from data
• Normalize/rationalize data model

Reconcile multiple entries for logically equivalent objects

to a single, standard data name

Re-engineer data to conceptual entity-relationship diagram,

analysis model

6 For example, if a system has multiple programs including both flat files and DBMS, we
recommend first working with data structures for the DBMS and for the I/O going to/from another

system.

SEL-92-004 page 335

9

Forward engineer normalized design
Make modifications to code in the CASE tool

Forward engineer the whole system to construction, returning to the

original platform

We felt this prototype had many of the characteristics of "typical" IRS target
environments and would demonstrate benefits and/or difficulties in using CASE

technology for maintenance. This prototype had appeared to be a portrait of a re-

engineering exercise. The code was conditioned prior to being put into the CASE tool;

data was separated from process in the code; data was rationalized and normalized.

The challenges we subsequently faced were not the result of the conditioning process.
Rather we had neglected to perform an important planning step - setting objectives on

the basis of inventort/analysis and needs assessment. The business need should be
established first, then the technical mechanics second.

Findings
As a technical proof-of-concept, the prototype was largely successful. It was good

experience and valuable lessons were learned. Some of the lessons learned could have
been learned by listening to someone else's story like you are doing here today. Let me

lay some of those out here.

The candidate system was selected because of its representative size and technical

characteristics. It also was fairly well contained, not requiring intricate interfaces with

other programs or systems. It had an enthusiastic sponsor: upper and middle

managers who authorized the technicians to participate in the 28-week project. The

internal characteristics of the system were not so suitable to re-engineering.

Unfortunately, the architecture of the system - with its 37 batch and online transaction

programs, accessing both fiat and DBMS files - was not an appropriate candidate given

the pre-selected re-engineering objectives for the proof-of-concept. The candidate
system and target objectives were selected without the benefit of Inventory/Analysis

and Positioning.

It was assumed the resultant system would look much like the original system did and

testing requirements were established based on those assumptions. Half-way through

the project, the normalized data model was presented for review and the light went

on. The original system had only auxiliary files being accessed through the data base.7
The substance of the business data was stored on fiat files, primarily on tape. The

normalized data model, if implemented, would so dramatically affect the processes
that the code would have to be abandoned and rewritten. At this point, it became clear

that the project objectives had not been carefully selected. Had the objective of the

project been to modify the system to its most efficient form (see business re-

engineering below), there would have been no question as to how to proceed. We

would have followed through with the normalized data model and rewritten all of
the code, boiled down to a handful of new programs. However, rewriting the code

would demonstrate nothing about reverse engineering the logic into a CASE tool and

forward engineering (generatin_ code for) the same functionality to the target

7 The DBMS was storing the transactions to process later in batch mode against the flat file

which held the meaningful data.

SEL-92-004 page 336

10

platform. At that time, demonstrating the equivalent functionality of business re-

engineering in the testing phase would have been difficult; we had already prepared to
test 37 programs. We did not have the staff or the time to create equal testing scenarios

for the newly developed code, to exactly match the original code.

IRS decided at this mid-way point, rather than forward engineering the fully
normalized data model, to instead implement small modifications to the data

structures, so that the code could be preserved in close to its original form. This

system was neither business re-engineering nor the same as production. In the process

of re-engineering the code we discovered some awkward programming styles and

processing indicating patchwork, which were preserved into the CASE tool. We
realized this candidate system, although tested, should not be put in production.

We can draw valuable conclusions from the work that was done. The project was

completed to run on the Unisys, with successful code generation, tracing to design
level in a CASE tool. We were able to populate the CASE tool with reuseable objects.

Just the learning process of cleaning up the data and building models alone was a
valuable one for the technicians.

But more important than these simple technical objectives were the findings which

frame the plans for the next re-engineering project. For example, candidate systems
need to be chosen based on current systems inventory/assessments which are made in

light of business objectives. Also, prototypes should target production. It changes how
customers and project sponsors feel about project results. Targeting production also

helps focus project objectives and maintain project momentum. Another key

component of any re-engineering project is cleaning up the data before populating a
CASE tool. This step may seem self-evident to the casual observer, but it is one for

which we did not budget time. Important lesson learned. Another lesson entailed

facing the reality that a good deal of the work was manual or tool-assisted. Some

unique situations may require consulting services or specialized tools which serve a
market niche, most of which are only available with contracting services. For

example, because the original and target platform was Unisys, there were additional

steps at both the front and back end of the re-engineering process, which can be
automated with a special purpose tool (i.e. not available for mass market). The

technical approach we used on this prototype, mixing manual and tool-asssisted

processes, is well-documented and could be reused again with a like project.

Technical Approach: Data Re-Engineering
Slide 16 shows the technical approach we took during the project, listing tools,

automated processes and manual processes. A text editor was used to standardize
names and Bachman/Analyst TM was used to normalize the data model. Here lies the

mid-life-cycle crisis. H we forward engineered the normalized conceptual data model,

the fiat files disappear, and so would 30 batch programs. Although, getting rid of

unnecessary programs is a good idea, this was not the project's originally stated

objectives. So, the data model was de-normalized to target most of the original file
structures before moving it to the Knowledgeware ADW rM tool where it was merged

with the process model. You will see two branches into the ADW tool. The direct link

to the ADW Analysis Workbench tool was the entity-relationship data model, as
normalized in Bachman. There was a second branch into the ADW Design

SEL-92-004 page 337

11

Workbench tool. That branch shows the IDMS DDL passing the de-normalized design

to the Design Workbench to be merged with the process model.

Technical Approach: Application Re-Engineering
Slide 17 is a diagram showing the process of the application re-engineering. This

procedure was fairly straight forward. The imsCASE TM tools was used to perform the

special modifications that had to be made to the code in the conditioning phase:
removing Unisys distinctives within the code, and modifying the code to reflect data
name standardization and new data structures. The imsCASE tool exported system-

wide repository objects to a single encyclopedia in the Knowledgeware ADW Design

Workbench. As originally specified, analysts made enhancements to the function of

the system in the ADW tool to demonstrate maintenance proof-of-concept. Then the
ADW Construction Workbench generated code and database manipulation language

(DML). On the back end, the imsCASE tool was used to modify code before returning

it to the Unisys platform.

Features and Futures:

Automated Tool Market Survey

Objectives
The third study, a Market Survey conducted by Case Associates, Inc., developed
evaluation criteria for tools and identified tools which meet IRS corporate needs. The

Market Survey's objectives were:
• Use re-engineering methodology as a baseline for developing tool

classifications.

• Interview representatives from the IRS maintenance and development

community concerning objectives behind tool needs.

• Develop and apply tool evaluation criteria across an existing vendor database
of several hundred tools.

• Select tool classes of special interest, and determine state-of-art best-in-class.

Integrated tool sets were identified as a special tool class.
• Interview top 15 vendors (of the best-in-class) to discuss tools in more details
and discuss tool futures.

• Write a white paper on software engineering standards and tool integration.

Interview results: IRS R3 Objectives
The vendor for Market Survey conducted more interviews. 9 The results appear like a

demographic breakdown of an organization in transition. The diverse IRS

community falls into camps of five main objectives. These objectives represent five

important ways that the IRS can apply re-engineering technology. Everyone can

8 The ImsCASE tool belongs to the consultant for this contract. It was used for the following

purposes on this project=,parse/export Unisys COBOL Procedure and Data Divisions; parse/export
Unisys DMSI100 Data Definition Language; create repository of system-wide objects including shared
subroutines and standard data elements; static analysis of source code and source cross-referencing; and

repository data interfaces with Knowledgeware's ADW.

9 Six months earlier similar re-engineering briefings and interviews had been given by Price
Waterhouse for the R3 Assessment and Methods task.

SEL-92-OM page338

12

benefit from the number one, but each of the others are defended as primary objective

by one of the organizational units within the IRS. In truth, they provide the

parameters for setting target objectives and outlining a transition strategy. Those five

primary objectives are as follows:
1. Creation of an inventory of all current systems.
2. Faster software maintenance while capturing information about the current

systems.
3. Current system verification and validation of Business Area Analyses
created by the Information Engineering group.
4. Information extracted from current systems to assist in the development of:

New Business Area Analysis (BAA deliverables in IE); and

R3 I-CASE repository for forward engineering.
5. Transition to new target environments supporting the Standards-Based

Architecture (open systems).

Tool Integration
Myth: "CASE tools are presently non-integratable; we should stick to one tool, for the

sake of standards and control."

Reality: Unfortunately, our many transition needs and activities are not so simple.
One tool does not encompass all the functionality of a software development

environment. The goals of the IRS modernization are the driving factors. We

look to vendors with non-proprietary interfaces and open systems for the

potential to integrate CASE tools.

The goal of tool integration is to make a collection of tools appear to users as a single
tool. This aspect of the re-engineering industry is only beginning to produce interface

requirements to the vendor community. As stated elsewhere, tool integration is a cry
which we, as users, have raised through our acquisition documents. Tools should
have the same look and feel (user interface) so that the transition between tools is

smooth and learning time is minimal. All the data produced by one tool should be

usable by another tool without loss of meaning (semantics) or loss of content. It

should be easy to navigate between the integrated tools, carrying the information
between the tools. Tool execution should be controllable in a uniform way so tools

can be combined to form higher-order functional units.

In a multi-tool, multi-vendor, multi-platform environment, standardized tool

integration support is needed to ensure a consistent user interface, common database
and standard communication mechanism between tools. An IPSE, Integrated Project

Support Environment, is a rich solution, yet unavailable today. It will support such
users as tool builders, project managers and application developers to manage software

development in an open architecture environment. INS is watching the CASE
industry to see the extent of vendor cooperation on integration standards, and to assess

the maturity or likelihood of integrated Software Engineering Environment (SEE)lO or

IPSE support for the future.

10 The Integrated SEE framework is based on the NIST/ECMA Reference Model (National
Institute of Standards and Technology / European Common Manufacturers Association -149) which in
turn references the _ standard for a Portable Common Tool Environment, aJ_a. "the toaster model".

SEL-92-004 pase 339

13

There are four categories by which one integrates tools: process, presentation, data and
control. The SEE is a framework for software engineering, an open systems

environment presentation, control and data integration of software engineering tools

using standard interfaces and architecture. These standards are still only goals for
most vendors, and only partially implemented in all cases. Data integration is

regularly offered by vendors. But data integration comes in various "sizes" and is
most effective when coupled with control integration. The most complete form of

integration, data sharing, is presently only available within single-vendor Integrated
CASE tools. Data interchange is offered between a small number of firms, while data

linkage, passing fiat ASCII files through import/export facilities, is offered by many.

The important control mechanisms which give the data meaning are excluded in the
transfer in all but the data sharing example. The industry has a long way to go in

providing this level of integration.

To define clearly what we, as the user community, are asking of the vendors: process

and presentation integration is mandatory - data and control services are optional
behind them. The framework for integrating R3, the open systems environment of

IPSE and IEEE is the most important component for integration.

Transition Challenge: Managing Multiple Tools
Reference Slide 24, this is a Venn Diagram representing the information stored by

tools supporting current systems (A), cross-systems integration and corporate-level
inventories (C), and ICASE development (E), and the intersections among them31

This diagram portrays the integration challenge. Using a manufacturing analogy, the
three large triangles illustrate a warehouse scenario. The A/B/D triangle makes up a

manufacturing supplier. The B/C/D/F triangle represents the storage warehouse. The
D/E/F triangle is the manufacturing facility. Where as the first facility produces parts

to be used in the final product, their goal is to ship the product to the manufacturer.

As often happens, there is an interim shipping transfer point, where raw materials are

stored, perhaps even inventoried for use later. The final destination, however, is the
manufacurer. In the CASE tools scenario, the A/B/D triangle are the niche tools, and

existing systems maintenance, working with primarily construction objects, producing
normalized data models or conditioned code. The B/C/D/F triangle represents the

integrator, presently held by repository-like tools. The D/E/F triangle is the forward

engineering CASE tool, generating code for new or replacement systems. The
intersections between the triangles provide the most interesting challenges. There

exist interfaces and integration between tools, most of which are proprietary "hot
links" between individual "business partners". The integration goals are:

1. Get tools for current systems to allow work on incremental improvements.
2. Take deliverables from A and integrate via C with E.

3. Add value-added management information in C, to synchronize and control

enterprise operations.

11 A = Current Systems, all existing production

B = Change requests, testing, field operations, database admin
C = The Integrator- Configuration Mgt, Enterprise & Management Info
D = Requirements, Rationalized Data/Code, CSA, data migration
E = ICASE development, forward engineering
F = ICASE verification & validation, model management

SEL-92-(X)4page 340

14

Multi-Vendor R3 Tool Set Examples
In the review of some of the tool set recommendations, some months later, it is clear

that the industry is rapidly changing. At least one of the tools listed here, reference
Slide 23, was marketed by a company that is no longer in business. The market survey

results were given to us with a caveat:, the industry is changing so quickly,
recommendations are valid for three to six months. Within twelve months, some

change is evident in fully 75% of the tools listed in the survey. Either feature offerings
have shifted their position among competitors or companies have diversified. These

industry realities confirm the earlier recommendation, only procure tools for a
defined need to use in a current project. Don't buy a "tool box" full of tools for use

someday.

These tool sets also demonstrate the "hot links" between specific tools. Although this

is often marketed as integration, and can be extremely useful if a project requires two
tools to communicate, be aware of the limitations of what is being sold. These

linkages win need to be maintained, if the project has any extended life. Which
vendor will maintain this linkage? What happens if one or the other company goes
out of business? We are still waiting for the interchange standards to be implemented.

The optimum goal would no doubt be to wait five years until the industry settled
down a bit. But we have immediate problems requiring immediate answers. For this

reason, we recommend that technology refreshment clauses be included in new

procurements. Identify specific business objectives which can be served by categories

of re-engineering tools and acquire those tools for use in clearly deFmed projects. Or
contract with an agency that will provide the products for the work. Consider settling

for "good enough", slightly less functionality in the short term using a canned, open

product which buys you a vertically upgradable and integratable environment over
the long run. Watch industry alliances, national and international standards, and

determine which tools position the organiztion with the best options.

Commercially Available Integration Environments

Integration environments are beginning to be available in the marketplace, reference
Slide 22. Most of are based on the "toaster model", offering plug-in features for

multiple tools. One should look carefully to determine the level of integration being
demonstrated. About all "data integration" means today is exchanging entity-

relationship diagram or data dictionary information. Know the process by which the

tool provides ERD integration, i.e. how will one use it? Meanwhile, vendors will all

say they are planning to be "compatible" to whatever the latest standard hits the trade
journals. Ask when the offering will be available. Ask how the promised features
will deliver the requested functionality, look for the shades of grey through the smoke

and mirrors. "You get what you ask for", meaning, be an informed consumer.

Business Re-engineering

Until now the focus of this paper has been software re-engineering. Throughout our

R3 studies, we kept on encountering another "re" word that did not go away; it has

become a prominent consideration. The objectives of sound business practice are to:
• Achieve a strategic and competitive position in the industry;

SEL-92-004 page 341

15

• Increase productivity;

• Respond rapidly and flexibly to deploy new or changing mission-critical
functions;

• Be cost-effective;

• Serve the customer in the spirit of Total Quality Management.

Business re-engineering refers to modeling the organization business practices, and

procedures to reach the above objectives.

How does technology support busine_,a needs?
Old ways of doing business are wedded to obsolete technology and that inefficiency

puts an organization at a competitive disadvantage. Some critics of software re-
engineering are concerned it perpetuates obsolete ways by means of improved

technologies. Citing Paul A. Strassman, Department of Defense, the organization
should view a modernization effort as a functional improvement of business

processes, not a technology program.

For example, when looking for areas to improve, executives should look for
unnecessary redundancy. Decentralization of operations or Total Quality

Management principles also impact the service to the customer. Changes in the

supporting technology which affect improvements to business process include
consolidating and integrating data, providing seamless information flows and

just-in-time data, and sharing reusable software components. However, advances in

hardware have outpaced those of software architectures, leaving customers with

increasingly greater expectations of what software should offer them. Strassman states

the common glue for making a software engineering infrastructure feasible comes
from a coherent approach to information management. Part of this approach "is

contained in the principles of the separation of the roles of information providers
from those of information customers."

Who are the customers at IRS? Broadly, IRS customers are the U.S.A. taxpayers,

Congressional lawmakers and Department of Treasury. For developers of IRS
software, our intermediaries are functional end-users in the IRS whose responsiblity is

to implement and enforce tax law. For those creating the Software Development
Environment and information technology infrastructure, customers are the

developers of software.

How does a Software Re-engIneering Framework support Business Re-engineering?

We believe an effective business process is the foremost priority and is absolutely

essential for the good standing of the organization. Having established those major

business prerequisites, we believe software re-engineering does have a role when an

orderly transition into the new technology is necessary, as opposed to letting the new

system replace the old wholesale.

Wholesale replacements are high risk, time-consuming and costly. Even though a

new generation may not care for its legacy, the answer is not throwing away the

existing system (like throwing out the baby with the bath water). Re-en "gmeering

should support a transition effort which determines the mapping, phased co-existence

and synchronization between legacy and new systems, in two most critical areas:

requirements or business functions, and production data migration. Creating data

SEL-92-004 page 342

16

and/or process models for a legacy system, will promote understanding of what is

being replaced by the new development life cycle. The effort will proceed with less risk

than doing the new analysis blind or from scratch. The existing production operations
are mission-critical and form the definitive baseline from which any changes must be

managed J2

Not all re-engineering means migrating to new systems. CASE tools may be used to
relieve the maintenance burden for existing systems. Support for maintenance during

a long-term modernization effort should not be disregarded because the system win

eventually be retired. Perhaps there is still cost benefit for CASE during its remaining
useful life. CASE support for maintenance can be an enabling technology. While

aiding analysis and maintenance it may also prepare a legacy system for migration to
open systems, I-CASE, etc. It enables software process improvement and prepares the

organization for the cultural readiness to use CASE.

Risk Management
There are business risks involved in developing software within estimated time and

budget. There are significant benefits to evaluating current systems to determine what
can be retired last (or not at all). Planning to utilize the current system and its

strengths in a transition strategy or business plan reduces risk. Consider an
organizational framework which approaches software development from a project

management or risk-driven perspective, reference Slide 29.

The risk management techniques in the table, written by Barry Boehm, are part of a

"spiral method for software development" which incorporates prototyping,
evolutionary user and technical requirements, short requirement inspection and

verification loops, and risk resolution. Spiral methods are analogous to down-sizing

the software lifecycle away from top-down waterfall methods. It is risk-driven, where

by comparison, information engineering is document-driven.

Risk management techniques fit in well with a range of software project situations. It
fits well with the scenario-driven approaches of the redevelopment migration

framework. The techniques are appropriate for high risk areas, when testing

migration of re-engineered modules, and for internal software development (vs.
contractually specified). Incremental prototyping and letting the end-user have a
tool-assisted view of their specifications would be a suggested extension for some

software development in TSM.

]_ecommendations for the Organization

This paper has been filled with commentary to those who are about to venture into
the redevelopment world. Here we shall advise certain steps which we are now

beginning to take; which, if we had to do it over, we would make our first priority.
The recommendation which is the most important and prerequisite to all others is to

establish an infrastructure to manage large-scale software development. Failure to

12 Requests for changes and enhancements to maintenance systems need to be coordinated with

new development work.

SEL-92-004 page 343

17

establish this infrastructure can weaken the effectiveness of the other

recommendations which depend upon a stable foundation for software engineering.

Define and implement an in_astructure

Myth: "A software methodology and its supporting tool is sufficient for

implementation."
Reality: A single I-CASE tool might satisfy needs for a standalone project. However,

for large-scale software development and coordination (and IRS tips the scale!),
the success of any technology hinges upon the infrastructure for software

engineering. Management of the engineering process or a framework for

software development projects, like an IPSE, Integrated Project Support
Environment, should be understood and in place as standard operating

procedures. The infrastructure supports management, IPSE/tool builders, and
software developers; it supports cross-system development coordination and

system redevelopment through to implementation (versus stopping short of

supporting the full life cycle).

The greatest lesson we learned from our methods, tools, and prototype studies was

that an organizational framework - infrastructure - is as critical, if not more, to the
success of large scale software engineering than the technical nuts and bolts of CASE.

For all three R3 projects, the vendors presented findings citing the lack of IRS

organizational readiness - explicitly citing lack of infrastructure - as an obstacle to
continue applying R3 approaches. However, all three vendors felt that R3 approaches
were critical to the success of TSM. Here the word infrastructure is used broadly; R3

would be integrated with the entire organization, managing transition issues for large

scale information technology. Continuing to perform prototypes would put the cart

before the horse. Quality assurance procedures, change and configuration

management, project management and short/long term procurement support should

be in place before the development process begins. Those accountable for TSM should
make infrastructure an immediate priority. Some R3-related elements of an

infrastructure for TSM are not in place yet, but are critical success factors, and are listed

as follows:

• a transition strategy;
• ob_ctive- and requirement-driven software engineering processes;

• configuration management synchronizing old & new systems;

• traceability of requirements;
• reusable software components;

• procurement of tools for a software engineering environment or an IPSE.

Prepare an inventory of current systems. On an enterprise-wide scale, document the

component names of system operations; identify the salient business purpose(s) for
each main program. Create an integrated inventory of operations, showing

relationships among system "schematid'/data flow components, programs, data tries,

users, developers, methods, etc. Later, for selected systems, further decompose to
relate the data elements, processes and requirements. There are automated tools to

support this effort. This inventory will be essential in evaluating enterprise business

needs and providing a basis from which the portfolio analysis is made.

SEL-92-OM page 344

18

Conduct a business needs assessment/measurement phase. Identify software

problems. Determine the extent to which the system or its separate components are
functionally stable and represent future business and technical needs. These
assessments are made at a system or pro_am-level; source-level metrics are supported

by automated tools. Metrics and measurements of various kindsls can be gathered to
determine specific system problems. Tools can assistin identifying performance issues
and maintenance-intensive code.

Develop criteria to select RS candidates. Using the business needs assessment
information, graph current systems to portfolio analysis axes, judging technical and

functional quality, resulting in a view of a high-level snapshot and prognosis for a

class of problem types; reference Slide 10 and section above on Portfolio Analysis.
Consider the feasibility of whether reusing or making improvements to existing

software components supports business and technical objectives. Criteria for quality

will, again, reflect future technical and organizational goals; e.g. whether a system's
existing technical architecture matches closely to the future target architecture. Goals

need not be grandiose, nor revolutionary; if incremental change is planned, the needs
assessment and portfolio analysis would assist in planning the appropriate sequence of

incremental improvements (see Transition Strategy below). For example, Portfolio

analysis may only model moving to a database from fiat files, or to modular
subroutines from large monolithic programs, both still on the same hardware

platform.

Write a Transition Strategy. A transition strategy outlines low-risk target strategies

over multiple phases in order to reach long term goals. Without a phased approach,

those same strategies could have been high-risk.
There are two sets of transition strategies. The obvious one which first comes to mind

is the transition schedule and strategy for end-user production systems from the

base of existing legacy systems. The second transition strategy determines the

schedule and changes to software engineering processes and environments

while supporting maintenance and/or the transition to new end-user targets.
Prioritize suitable RS objectives for the entire enterprise's software engineering effort.

Prioritizing expectations for re-engineering is iterative; the organization
conducts its needs and current systems assessments, and balances business needs

with short-term goals based on level-of risk, cost or time of effort. Objectives
should be traced to customers, who own the requirements, and end-users.

Objectives need to be identifiable by deliverables (measurable benefit or
measurable barometer of objectives met).

Use RS opportunities immediately to support incremental organizational readiness:
Model the business data of major IRS systems; make CASE-assisted,

incremental, source-level improvements to assembler language programs; use

current system data models not only to verify and validate data and processes of

new development, but to serve as the baseline model for new development;
and, allow maintenance programmers in areas using C language, or those

supporting systems which will not be retired in the near term, the benefit of

13 It is not within the scope of this paper to present a comprehensive taxonomy on the many

forms of inspections, measurements, and metrics possible. However it is important, as with all

processes, that measurements be taken which directly facilitate the user of the metric to benefit from

the information, and help the user determine an appropriate software engineerng strategy.

SEL-92-004 page 345

19

using R3 CASE to make incremental improvements. Determine a hierarchy of
those activities, while coordinating dependencies._4 Without having a

transition strategy in place, the organization is at risk of completing a well-

executed, technically-perfect project that neither supports organizational goals

nor moves any closer to final objectives- and may be thrown away.

Choose a candidate project(s) targeting implementation. A re-engineering support

program must provide some level of support to appropriate, selected candidates. Start
out with a small and wen-defined (manageable) scope in a proof-of-concept. Although

the long-term modernization should be flexible as needed, a project's given objectives
must be fixed, not moving targets. Beginning at the project-level, make a more

detailed assessment and re-engineering plan. The project adapts software engineering

processes to fit its situation, not one size-fits-aU; reference Slides 9 & 11. Then,

implement the project! Without implementation as a hard and fast goal, objectives
may slide and findings may be tangential to use in real production. This is where the
rubber meets the road for re-engineering concepts. It provides opportunities for

technology transfer of software re-engineering processes to increasing numbers of
technicians and managers. Successful use of re-engineering and technology transition
are still on-the-outside-looking-in at IRS.. There are many suitable projects at IRS

which would demonstrate the pragmatism of re-engineering approaches. In fact, we

argue, any development approach must by necessity include resolving transition
issues.

Establish an Ra team to support developers assisting with measurements, project

planning, tools use and coordination with corporate modernization efforts. A large

organization should be able to assemble a cadre of skilled software engineers and
trouble shooters. A team supporting Ra projects should report to a chief architect who

is responsible for both an integrated, enterprise information systems architecture and
the technical feasibility of the modernization solution. A permanent team
demonstrates executive mandate, management support and authority to make

technical decisions. The IRS has been performing its re-engineering work using a

loosely matrixed organization, assigning staff part-time to the ad hoc effort. By

creating a permanent team, resources and relationships can be consolidated to make
the support for R3 more stable and apply the technical expertise of personnel. It also

capitalizes on the efficiency and effectiveness of a team of technical specialists, with
experience in using tools and methods. Such a team can provide support to projects,

facilitating technology transfer to the organization's grass roots increasingly over time.
As technicians from the functional areas participate in projects with the R3 team, they

serve an evangelical purpose, carrying the experience and knowledge back to their
maintenance environment. Organizations without in-house resources can hire

consultants; however, the organization must devote some staff to work side-by-side

with the consultant, otherwise the organization will have fiat progress in technology

transition.

14 One example from the DeparUnent of Defense is in the CIM, Corporate Information
Management, effort. DoD has a "reverse tree" in its strategy, where over time and several phases, DoD
plans to merge and consolidate from ninety to eventually seven systems (Strassrnan).

SEL-92-004 page 346

20

Procure tools which meet the business needs, objectives and timeframes of the

organization. Conduct a market survey. Identify the tools available to meet the
business needs of the organization today. Again, know objectivesfn'st.Do not simply

look for problems and fixeswhich fita favoritetoolor technology. Match the toolsto
needs. Look at the future technology trends in the industry,and develop flexibletool

requirements and evaluation criteriawith a long useful life.Markey surveys and
evaluation criterianeed to be maintained because CASE products and capabilities

change at an extremely fastpace.lS Apply the criteriaand identifytoolswhich are most

appropriate as they are needed. Only purchase toolswhen they willbe immediately

used in a project,

Rationalize enterprise-wide data and standardize data names. This means eliminating
redundant names for the same logical data structures and adopting a single standard

name for analysis level dements across enterprise systems. Data name
standardization across the enterprise is an central linchpin for those organizations

which aim to integratesystems. Integratingsystems may have severalcontexts:

re-engineering to consolidatemultiple systems to a singlesystem and database;using

data name standardization to betterunderstand data interfacesamong multiple

systems; facilitatingimpact analysisand configuration management across the

enterprisein response to change requests;assistingimpact analysisor currentsystems

analysis for moving like-dataand relatedlogicto new methodologies; creatinga data

dictionary;and using standard data names for new systems development.16 These

activitiesshould be performed whether assistedby toolsor not. Some toolsupport is

available,although rationalizingand standardizing data names cannot be fully

automated because understanding the meaning of the data usually requiresthe

intelligentjudgements of a domain expert.17

Technology Transition

Technology transition includes a "paradigm shift".18 We do not think it means just

learning to use CASE tools. We need to apply CASE technology, methodologies and

perform business re-engineering for Information Technology, to find a better business

process for software engineering. Part of the role of tool-assisted re-engineering is to

15 David Sharon says market survey and evaluation criteria are 25% obsolete in three months

and 50% obsolete in six months.

16 The timing of having these data administration capabilities and procedures in place

relative to the life cycle and implementation schedules of the customers (end users, software

developers) makes a large difference in the purpose for which customers shall use standard data names
and its impact on degrees of integration.

17 Sometimes trying to force a process for data rationalization can be quite kluge-like using
some tool which was not fully intended for that purpose. Our answer for tool-assisted data

rationalization is a request to the vendor community: "Give us a good text editor!"

18 A paradigm shift means that the way you see the world today forever renders obsolete the

way you thought it was yesterday.

SEL-92-004 page347

21

prepare the organization for "technology push", rather than being pulled along later,

thereby accepting the fact that the tools today are in a fluid state or not mature

(Mosley).

Our goal is to buy and use an Integrated Project Support Environment (IPSE).

Although one stop shopping for an IPSE does not exist today, we shall assume a

proactive role as a customer of llX3E, and integrated SEE (Software Engineering
Environment). CASE standards for these environments are being developed by

vendors and user groups. The opportunity to direct these efforts makes this time

exalting.

Our participation in influencing the CASE market makes this time exciting, but it also

can be problematic. Finding and purchasing the "best-in-class" tools, can be an elusive

goal. Just when a decision is made, another product is released, including all the
features requested. Dave Sharon calls it settling for "good enough" tools. The 80/20

rule. If you settle for 80% of exactly what you want, you may be able to move to

solving your problems more quickly, as opposed to spending 80% of your time trying
to find that last 20% functionality which may not exist in the market for years yet.

Marketing R3 Internally

Re-engineering provides a wide variety of opportunities to support business goals.

But our experience in the IRS is that if those opportunities are not understood by

management, if they cannot be demonstrated to specifically support critical

organizational goals, this theory will be just another great idea that is not utilized.
Many of the recommendations listed above identify the marketing strategy outlined

here.

Be realistic. Remember, there is no magic, no automatic answers, no instant

resolutions. Don't oversell it. Make sure both technicians and management

understand that completely automated answers are not being proposed. Good

techniques and reasonable benefits are the real advantages to re-engineering. Beware

of presenting this as a "savior strategy".

Success is the best marketing strategy there is. As discussed in the recommendations

above, identify a small project which targets production and is perceived as important.
No amount of marketing will recover from a large failure. There will be a need to
learn tools and methods. Providing a managable task in which staff can establish

technical and procedural processes to follow will create that environment in which

success is possible.

Continue to keep the benefits of this technology before the managers. Some will be
convinced; others will remain skeptical. By providing reports which measure results

and focus on the strategic benefits, they will serve as marketing vehicles. The
comment from above, "don't oversell it" applies here as well.

SEL-92-004 page 348

22

Realities of R3
We have presented here some lessons learned from three years of struggling to
understand this technology and its potential benefits. We discovered that of those

lessons, the shattering of our myths and misconceptions, to include unrealistic

expectations of the technology, were among the most important. With realistic
understanding of the considerable possibilities using re-engineering techniques and

methods, we could present a plan to include re-engineering in our transition strategy.
The "realities" listed below represent those lessons learned, and the abandoning of

those cherished myths.

Establish clear objectives - There are many solutions to attempt. Make the solutions fit

the problems (not a favorite toolset).

No Silver Bullet - As stated several times in the paper, this technology is not an

automated answer to all redevelopment problems. It involves hard work and, in

many cases, manual work. But there are excellent tools and methods to support the

analysis and evaluation work which must be done. Properly executed, a good return
on investment can be demonstrated.

Embrace Business Re-engineering Early - Approaching the technology as a solution to

business problems may lead to technical solutions simply providing a faster way of

performing functions that no longer reflect the way the business operates. Not every
organization is plagued with antiquated systems, fixing the business architecture in
stone for many years. But a comprehensive software redevelopment will provide an

opportunity to review the functional processes in light of new business objectives.

Get Experienced Guidance - Ordinarily, one immediately thinks of hiring contract

personnel with experience in using tools and methods. And that is recommended.
But don't forget in-house personnel, who have functional and organizational

knowledge necessary to the success of any project. These organizational specialists
should be made an equal participant with any contractors, building experience as they

provide functional guidance. This partnership provides the means of gaining

experience and building a team of resident experts.

Phased Change - Plan system implementation with organizational readiness. This

"reality" reflects the integration of re-engineering phases with the IS strategy. In the
case of the IRS, it is a transition strategy. Mapping specific re-engineering tasks to

support strategic milestones serves as a roadmap for implementation. By identifying
bite-sized tasks, the change can be planned in reasonable steps.

Balance R&D with ROI - Implement planned solutions; nothing gives a project

motivation like putting it into production. There will necessarily be some studies
which serve primarily to orient technical staff to tools and methods. However, proof-

of-concept prototypes can be frustrating, if they only produce statistics and
recommendations. The key is to identify production systems which can provide

benefits to the organization - demonstrable return on investment (ROI).

Gather Case Study Results - Don't pursue objectives in the abstract. There is a
tremendous amount of work that is being done in the industry, in both the private

SEL-92-004 pase 349

23

and federal sectors. Take advantage of the work that has already been done, lessons

that have been learned. Jump-start corporate strategic planning with these valuable

findings.

Transition is a major issue - When the objective of re-engineering is a redevelopment

project, a critical step in the implementation of projects is a transition plan. Such a

plan should include a mapping of old-to-new data, old-to-new processes, replacement
strategy for old programs and systems, conversion of old fries to new formats for

historical reports, and replacement of hardware (some systems may be ported to the
new hardware prior to conversion, in an attempt to limit the time two platforms have
to be maintained). This transition period can be supported in significant ways with

data re-engineering tools, slice-and-dice analysis tools to modularize the code for

replacement and conversion and data conversion tools. Failure to plan this phase will
result in a bottleneck during implementation, which would be unfortunate, as these

are areas well-supported by automated tools.

SEL-92-O04 page 350

24

• "Review of the Tax Systems Modernization of the Internal Revenue Service",

National Academy Press, 1992-
• Barry W. Boehm. "A Spiral Model of Software Development and Enhancement".

Richard Thayer, Tutorial: Software Engineering Project Management; The IEEE

Computer Society Press, ©1988.
• Priscilla Fowler & Linda Levine. "Foward a Defined Process of Software

Technology TRANSITION." American Programmer, Vol. 5 no. 3, March 1992.
• Chris Gane. "Extracting Business Rules"; lecture, Software Maintenance and Re-

engineering Conference; DCI/CASE Trends; Washington, DC; 2/92.
• A1 Kortesoja. "Redevelopment Engineering: A Management View." CASE

Trends, 4/92 & 5/92; ©1992 Software Productivity Group.

• Daniel J. Mosley. "A Framework for Technology Innovation." American

Programmer, Vol. 5 no. 3, March 1992.
• John Palmer. 'The Big Crunch: Achieving Software Development Process

Compression." Object Magazine; May/June, 1992.
• Lamont Phemister. "Requirements for Reverse Engineering: Squirrel &
Butterflies for Functional Flow" CASE Trends, 10/92.

• David Sharon, CASE Associates, Inc. "Deliverable 27, White Paper on Tool

Integration Standards," prepared for IRS under subcontract, CBIS Task 88; October,
1992.
• Paul A. Strassman. "Information Management Topics: The Policies, Processes, and

Technologies of CIM." CrossTalk, The Journal of Defense Software Engineering;
Number 37, October, 1992.
• William Ulrich. "Re-engineering: Defining an Integrated Migration Framework".
CASE Trends, 11/90 - 6/91; 01991 Software Productivity Group, Inc.

SEL-92-004 page 351

MYTHS AND REALITIES

Def'ming Re-engineering for a Large-
Organization

SmdmY'm
Office _ Transition Mmagemcnt

Iutemal Reveaue Service, ISM:TM:S
8405 Colesvflle Rd., Suite 300

Silver SlmLng, MD 20910-3312
301/427-0151; flu: 301/427-0276

Introduction

• Internal Revenue Service's Tax S3_tems Modernization

• Reverse¢ngineering,re-engineering,reuse= _3_

• Three R 3 projects - findings and recommendations

• IRS corporate assessments, R3 methods

• Proof-ofconcept prototype

• Market Survey of off-the-shelftools

• Role oflnfmsmmmre, Business Re-engineering, and Technology
Tmmition

SEL-92-004 page352

Concepts, Content and Context:
IRS Assessment and R 3 Methods

Objectives

• Taxonomy ofR 3 terms and definitions

• Reveme engin_ and re.engineeringmethods

• Corporate assessment on broad needs

• Pt_ect plans for four execute-selected,]RS systems

Software Re-engineering Taxonomy

• Re-engineering

• IEEE: combined pro••rues encompassing reverse and forward
engineering, resulting in a "new" system

• Catide: improving current systems without impacting current functions,
technical platforms or archictectures

• Ulrich: A combination of tools and techniques that facilitate the
analysis, improvement, redesign and reuse of existing software systems
tosupportchanginginfonn_onrequirements

• Reverseengineexing

• process taking existing system and migrating it back tOa higher level of
abstraction

•¸Reuse

• applying knowledge about one system to another system; sharing
software components, requirements, and effort of maintenance

SEL-92-004 page 353

A Framework for Redevelopment

Tec_micmlAssessment

• EnvimnmermlAnalysis
• ProcessAnalysis

• Dam De4ini_onAnalysis
• ArchiWcmmAnalysis

Functional Assessment

• Bottom-upData Modeling
• Bottom-upFunctionalMapping
• Current to New Data Mapping

• Current to New FunctionalMapping

Re-development
Feasibility Assessment

• SystemWeightingFactorAnalysis
• Re.developmentStrategyCreation

• InterimSystem Support
• Fie-developmentPlan

• Dala Migration

• ,languageTmmla_on/Upgrade
• SourceCodeRestructuring

* Data DaErG_onP,a_o_
Slanaard)zafN)n

- CodeSpl_ Re-aggregation
• Da_a/ProcessRule Ex_emaliza_n

• RedundancyConsolJdmion& Bn,dnnlion.

i

• _ Reconciliation
• Log_ Data & ProcessMapp_g
• phy_caJD_a & ProcessMap_.g

• System/Sub-systemMigration
• SystemRegeneration
• Data/DBMS Migration

Poor--"

Portfolio Analysis

M_in_in

and

Replace

or

Retire

Good
Tect_c_ Query

Maintain

or

Reuse

Te_hnir'al Redesign

Or

Migration

l_mc_onatQuery

Good ¸

Poor

• An Enterprise-level Current Systems Assessment
• Not done at IRS, must be done

• Quality:. Stable and reptesents requirements
• Categorize sets: Mission-critical, duplicate application ftmetioxm,

1)latfonns
SEL-92-004 page 354

Up, Over, and Down

O

O

(or, Look Before You Leap) - Applied Use of
Methods

Reverse Engineering

.............. ._.-. _-___

t_...d

Objective: Populating an I-CASE tool with existing system components

Source: AI Konesoja, "Redevelopment Engin_ A Management
View". 4/92 & 5/92 CASE Trends, ©1992 Software Productivity
Group.

Business Re-engineering

• Achieve strategic and competitive position

* Increase producti_ty

• Flexibility to respond rapidly and deploy new or changing
mission-critical functions

o Be cost-effective

• Serve the customer- Total Quality Management

SEL-92-004 page 355

How does technology support business needs?

Citing 1_ A Str__, DoD/DIS."

• Do not perpetuate obsolete ways by means of improved technologies

• Functional improvement ofbusiness processes vs. technology program

• Reduce mmeccssary redtmcy

• Seamless infommfion flows, just-in, time data

• Deccatra!irat_'on

• Total QuafityManagement

• C.xmmaonglue formaking the infmsmlcmte feam'blecomes from a
coherem g_roaeh to infommtion management.

How does Software Re-engineering Framework

support Business Re-engineering?

• Wholesale replacements time-consuming and cosdy

• Determine co-existence and synchronization between legacy and new
systems

• Requirements orbusiness functions

• Data migration

• Use of tools as enabling tedmology

• Aid analysis and maintemnce

• Pxepare for migration tOopen systems

• Existing production is mission-critical, The Bottom Line baseline

SEL-92-004 page 356

Risk Management

Source: Bsn'y W. Boehm, "A Spiral Model of Softwm_ Development and F.nhancemenff. @1988

Tips, Tricks and Traps: TheR 3 Prototype

Objectives

• Use integrated CASE toolset ftmn source to target

• Single, integtmed repository

• Data standaxdization

• Verify migration to CASE first, then try enhancements

• Technology transfer

SEL-92-004 page 357

Tips, Tricks and Traps: The R 3 Prototype

Fmdin_

• Successful code generation, uacing to design level in CASE

• Populate CASE tool with reuseable objects

• Inventory/analysis assessments should drive objectives

• Clean-up existing source before populating CASE

• Servic,eswith tools needed forniche specialities

TECHNICAL APPROACH
DATA RE-ENGINEERING

COBOL Dais

8omoo
Code
end

DMS 1100
DDL

SEL-92-004 page 358

TECHNICAL APPROACH
APPLICATION RE-ENGINEERING

_ mmml m- -___ _ m

.UNIX

t' paamo,_

I_M I:mRcm1_DB

DNIS1100
_Uon.

Features and Futures:

Automated Tool Market Survey

Objvctivcs

• Re-engineering methods are baseline for tool classifications.

• Interview representative maintenance and IEM community

• Apply tool evaluation criteria a£'ain_t an existing database

• Detem_e best-in-class, and integrated toolset.

• Visit top 15 vendom to discuss tool futures.

• Wfit_ white paper on slandards and tool integration.

SEL-92-004 page 359

Features and Futures:
Automated Tool Market Survey

Interview results: IRS R 3 Objectives

1. Creation of an Inventory of All Current Systems

2. Faster Software Maintenance While Capturing Information About

the Current Systems

3. Current System Verification and Validation of Business Area
Analyses Created by the Information Engineering Group

4. Information Extracted From Current Systems to Assist in the

Development of:

a_ New BAAs
•b. An R3 I-CASE Repository for Forward Engineering

5. Transition to New Target Environments Supporting the
S_ndnrds Based Architecture

Source: David Slmmn, CASE Associates; CBIS Task #88

Features and Futures:
Automated Tool Market Survey

lrmdings

• Tool Integration

• Multi-Vendor R3 Tool Set F_amples

• Commercially Available Integration Environments

• Transition Challenge: Msnaging Multiple Tools

SEL-92-004 page 360

Multi-Vendor R3 Tool Set Examples

Ra Tool Classes

Tool Set
gmnaln

Tool Set I

Tool Set 2

Tool Set 3

ToolSet 4

Tool Set 5

Tool Set 6

1.0 2.0 3.0

$3aacms Load Systems

4.0 5.0 6.0 7.0

Inasgra_.d Testing/ Sof'_z,a._
Tool Sets Validation Proj Mgt

Bachnum Arrae IEF IEF -custom- None None
and Arme

Adpa¢ and Custom ADW ADW -custom- Compu- None

Compuw_ Brl¢i_ ware

Adpac Infmpan ADW Infoq_m, -custom- None None
ADW

Cadre to l_mpan _u:tmmn _ -custom- None None

Adp_ Bad.nan

Cadre or Cadre or Cadre or Cadre m" Softb_ch Many $ofionl
Proa_ Procs_ IDE]DE

Ernst& RE/T_ ADW

Young l_lm_

Bachmam

ADW. -custom- V'u_ofl None

Source: David Sharon, CASE Associates; CBLS Task #88

Tool Integration

• Standards-driven open systems

• Mandatory to integrate.

• Processmaaagemeat

• Presentation

• OptioaaVas-needed to integrate-

.Data

• Control services

SEL-92-004 page 361

Commercially Available Integration Envtronments
l'rodu_ Primary

Bmm_ Data Dictioam?/ Data "MS-DOS, OS/X IEWIADW,Bactnmm
Solutions. Solution DB2/MVS

lnfoSp_

Comrol

Reltedl DB _1

Son,,ffi=
One

Ath_um Software
Tecmok_ _ U_z. Mrs. SuOS

nq,ip_ffit SoU,n_ t_,ag_

_-Pl_tlrd SoftBeaeh UNIX 1_ aOtoob

IBM SDF./_00 UNIX O_r 50 mob

SrOL F.AS'r(r.umpesn UN_ .__
_ Sottwmz tool
Tec_oaow)

Softlab _ IT MS-DOS, MiaoF-omls_!
W_

_ caroup .q3E_,q?su_ Procem MS-DOS, OS/2PM Any

blVS/Dm

MS-DOS,OSf2, IEWIADW, Effiffikmmx,
UNIX Pbl/SS

MS-DOS, _ IEWIADW,_,
DB2/IdVS

MS-DOS IEF, IEW,
Eze.itmm_, Auto-Mate

Bachmaa/Aualyst,
ICL DDS.

Ora_]_s_ Tcloa

V_ Ow_50 mob

Somcc: David Sharon, CASE Associa_; CBIS Task#88

Transition Challenge: Managing Multiple Tools

A = (3xttent Systems, all existing production
= Change requests, testing, field operations, database Adrnin

B The-_grator- Ccefigurafion Mgt, Enterprise & Mgt Info
D = RequLrements, Rationaliz_ Dm/U.ode, CSA, data migration
E = ICASE development, forward engineering
Lm verification & validation, model management

Roll up your shirt sleeves: R3

Process Management & Tool Coordinati_._

II L II
Software Hfecycle Phases

/
/
/
/

Re-engineering Tasks

or

Tool Classes

_---'-Validation & Verification, Configuration Management _.___

Recommendations for the Organization

• Define and implement an infrastructure

• EsmblishaR 3 team

• Inventory current systems

• Conduct business needs asssesment

• Select R 3 projects from Portfolio Analysis

• Pmatte tools

• Ratiomlize, standardize cozpomte-wide data

SEL-92-004 page 363

Define and implement an infrastructure

Critical Success Factocs for Tax Systems
Modemizafion

• ObjectWe- and requirement-driven processes

• Configuration Management synchronizing otti &nev,.

• Traceability of requirements

• Data Standardization

• Reuse software components

• Pmoatement

Technology Transition

• "PamdigmShi/_ means business-reengineering for Information
Technology

• _ organization for"technology push"

• Settle for "good enough" vs. best-in-class tools

• Have role as oasmmer of IPSE (Integrated Pt_ect Support Environment)
and CASE

SEL-92-004 page 364

Credits

• Julia M_, Barbara Shammas, & many IP_ colleagues.

• Bany W. BoclmL "A Spiral Model of Software Development and Enhancement'. Richard
Ttmyer, Tmmial: Softwsre _ Pzoject Management; The IEEE Computer Society
Press, 01988.

• Pm_la Fowler & Linda Levine. "Toward a Defined _ of Softwa_ Technology
TRANSITION." American Programmer, VoL 5 no. 3, Mem_h 1992.

• Al Kortesoja. "Redevelopment .En_b_zing: A Management View." CASE Trends, 4/92 &
5/92; @1992 Softwaze _vity Group.

• Daniel J. Mcsley. "A Framewo_ for Technology Innovation." American Programmer, Vol. 5
no. 3, March 1992.

• John Palmer. "The Big Chinch: Achieving Software Development Process Compt_sion"

ObjectMagazine;May/June,1992.

• I.,amont _. "Requiremems for Reverse _ Squin_el & Buttez_es for
Ftmctionat Flow _ CASE Tmlds, 10/92..

• David Sharon, CASE Amociatm, Inc. _ktiverable 27, White Paper on Tool Integration
Standards," l_Vm_dfor IRS under mJ_ma'a_ C_IS Task 88; October, 1992.

• Pa_ A. S_ "Infmmalion Management TOl_CS: The Policies, Processes, and
Teclmologies of CIM." Ctx_Talk, The Smunal of Defmme Software Engineering; Number 37,
October, 1992.

• W'_ Ulrich. "Re-emgineeci_: Defining an Imegrated Migmion Framework'. CASE
Trends, 11/90- 6/91; 01991 Softwaze _vity Oxoup, Inc.

SEL-92-004 page 365

